Episodic Slow Slip and Tremor

Much of my recent work has involved studying slow slip and tectonic tremor in subduction zones.  Discovered about the year 2000 (in leap-frog fashion) in Japan and Cascadia, the two coupled styles of fault slip occur quasi-periodically, down-dip of the locked portion of subduction zone thrust faults and several strike-slip faults around the world.  Although when first discovered the question was “How can fault slip accelerate without leading to an earthquake?”, now that there are several proposed mechanisms that could plausibly generate episodic slow slip, that question has morphed into “How can we distinguish among the proposed physical mechanisms for slow slip?”.  I am tackling this question through a combination of numerical analysis and observations.

Jessica Hawthorne first used Earthscope borehole strainmeter data to show that the moment rate of slow slip in Cascadia is modulated by tidal stresses with amplitudes of only 1 kPa.  At the period of the strongest tide, 12.4 hours, the moment rate varies by about 25% above and below the mean, in phase with the tremor rate. The next step was to use this observation of modulation at the tens-of-percent level (as opposed to a few or nearly 100%) as a constraint on numerical models of slow slip.  Using what is arguably the simplest of the proposed mechanisms (a transition from velocity-weakening to velocity-strengthening behavior at a slip speed of about 1 micron/s), she came up with the first prediction of what controls the slow-slip recurrence interval for any of the proposed mechanisms.  She found that it was possible to match both the observed stress drops (or equivalently the recurrence interval) and tidal modulation, given sufficiently low effective normal stresses, but that to do so required pushing the limits of parameter space more than one might like.  

One lesson I learned from this work is that we need even more observations to judge between the proposed mechanisms for slow slip.  The most promising path, I think, lies in obtaining more accurate and complete tremor catalogs.  Tremor is notoriously difficult to locate because it lacks identifiable impulsive P-wave and S-wave arrivals, and is likely made up of simultaneous sources coming from multiple regions of the fault.  I am working on developing a “cross-station” detection/location algorithm, which compares the same short time window at different stations, as opposed to more traditional “cross-time” methods that compare different time windows at the same station.  Figure 1 shows how coherent the seismic signal can be at stations tens of kilometers apart.

Figure 1

Figure 1. Upper panels show horizontal velocity seismograms at 3 seismic stations on southern Vancouver Island, filtered 1.5-6 Hz and then rotated and time-shifted to maximize the mutual cross-correlation values. Lower panels (cyan curves) show the cross correlation value averaged over the 3 station pairs, using a 0.5-s moving window. Time axis is in seconds. (a) shows a local earthquake “caught” by the detector; (b)-(d) show 18 - 24 seconds of tremor.  The tremor contains both simple coherent arrivals, reminiscent of (a) but with lower frequency content, and extended-duration coherent signals that we interpret as superimposed, nearly co-located sources.

This high degree of coherence has resulted in a tremor catalog that is more accurate than any other from anywhere in the world, with relative location errors in the 0.5­­–1 km range.  This has allowed us to image in unprecedented detail small-scale tremor migrations that piggy-back on top of the main slow slip event.  These tend to (a) start at or within about 1 km of the main tremor front, and propagate back along strike at rates 25-50 times faster, about 10-20 km/hr; (b) less commonly do the reverse, ending at the main front; or (c) propagate up- or down-dip at or within 1-2 kilometers of the main front.  Several examples of these secondary fronts can be seen in Figure 2 below, which shows a 10-km-wide region that was very active in each of the slow slip episodes in 2003, 2004, and 2005.  These images are for the 2005 event; the main front propagates SE to NW at about 10 km/day (this can be seen from the progression of the blue colors from panel to panel).

Figure 2
Figure 2b

Activity as first the main front and then the secondary fronts pass through can best be seen on “space-time” plots such as in Figure 3, which shows both the slow progression of the main front to the NW and the much more rapid tremor “bursts” behind, for two days during each of the 2003 and 2004 slow slip episodes (in each of the 2003-2005 events the region of Figure 2was most active for about 2 days).  Colors in these plots indicate the relative “radiated energy” of the tremor detection.  At each location in each of the 3 episodes the tremor amplitude generally starts out low and progressively increases over a period of about ½ day before leveling off, spanning a range of nearly 3 orders of magnitude.

Figure 3

Figure 3.  Along-strike position as a function of time in the region of Figure 2, for two days of 4-second detections during each of the March 2003 and July 2004 slow slip episodes, color-coded by log10 of the relative radiated energy.  Black curves are computed tidal shear stress on the subduction thrust.  Tidal loads modulate the tremor amplitude to some extent but cannot explain most of the long-term variability seen here (note that the low tremor amplitudes at the start of activity in 2004 coincide with large tidal stresses; the same is true of 2005).

Related publications:

76 Publications

Nonvolcanic tremor is an important component of the slow slip processes which load faults from below, but accurately locating tremor has proven difficult because tremor rarely contains clear P or S wave arrivals. Here we report the observation of coherence in the shear and compressional waves of tremor at widely separated stations which allows…

To better understand the asymmetric distribution of microearthquake aftershocks along the central San Andreas fault, we study dynamic models of slip-weakening ruptures on an interface separating differing elastic half-spaces. Subshear ruptures grow as slightly asymmetric bilateral cracks, with larger propagation velocities, slip velocities, and…

[1] To better understand the asymmetric distribution of microearthquake aftershocks along the central San Andreas fault, we study dynamic models of slip‐weakening ruptures on an interface separating differing elastic half‐spaces. Subshear ruptures grow as slightly asymmetric bilateral cracks, with larger propagation velocities, slip…

Using a waveform cross-correlation technique, we have obtained precise relative locations for nearly 75% of the Northern California Seismic Network catalog (4300 earthquakes) occurring between 1984 and 1997 along 50 km of the San Andreas fault. Errors in relative location are meters to tens of meters for events separated by tens to hundreds of…

Using a waveform cross-correlation technique, Rubin and Gillard [2000] obtained precise relative locations for 4300 0.5 < M < 3.5 earthquakes occurring along 50 km of the San Andreas fault. This study adds to that another 5000 earthquakes distributed along 10 km of the San Andreas fault and 20 km of the Calaveras fault. Errors in relative…

During rock friction experiments at large displacement, room temperature and humidity, and following a hold test, the fracture energy increases approximately as the square of the logarithm of hold duration. While it s been long known that failure strength increases with log hold time, here the slip weakening distance, dh, also increases. The…

Observations of eroded volcanic rift zones indicate that dikes in Iceland are typically several times thicker than those in Hawaii. Geodetic and seismic observations of active rifts, however, suggest that dike heights in the two regions are similar. Provided the elastic properties of the rift zones are the same, this implies that dikes are…

Since the discovery of slow slip events along subduction zone interfaces worldwide, dense geodetic and seismic networks have illuminated detailed characteristics of these events and associated tremor. High-resolution observations of tremor, where the spatial-temporal evolution is presumed to reflect that of the underlying slow slip events, show…

Earthquake ruptures on the San Andreas Fault are affected by the material contrast across the fault. Previous observations of microearthquakes at the northern end of the creeping section have found strong signals of asymmetry in both rupture directivity (preferential propagation to the SE), and aftershock asymmetry (many more to the NW, on…

Abstract The variations in the response of different state evolution laws to large velocity increases can dramatically alter the style of earthquake nucleation in numerical simulations. But most velocity step friction experiments do not drive the sliding surface far enough above steady state to probe this relevant portion of the parameter space…

A striking observation from both Cascadia and Japan is that the tremor associated with slow slip often migrates along strike at speeds close to 10 km/d but updip and downdip at speeds approaching 100 km/h. In this paper I adopt the view that the friction law appropriate for these regions is unknown, and I ask what constraints the observed…

Field observations indicate that dikes form and grow in magma source regions, but the mechanics of this process are poorly understood. I derive time-dependent and self-similar solutions for the growth of buoyant dikes fed by porous flow in partially molten rock. The host rock is treated as poroelastic; for basaltic (but not rhyolitic) dikes,…

Earthquakes of magnitude 1 and greater seem to be ubiquitous features of dike propagation, but their origin is not well understood. We examine the elastic stress field surrounding propagating fluid‐filled cracks, with an emphasis on assessing the ambient stress required to produce earthquakes with linear dimensions of ∼100 m near dikes with…

Field observations and geodetic data indicate that dike intrusion in volcanic rift zones typically generates normal faulting and graben subsidence at the Earth's surface. Elastic models indicate that two-dimensional (infinite strike length) dikes do not lower the ground surface above the dike and that normal faults do not lower the surface…

Geodetic data and field observations demonstrate that the emplacement of dikes in volcanic rift zones frequently generates normal faulting and graben subsidence at the Earth's surface. Elastic modeling of the vertical ground-surface displacements above dikes and faults indicates that the extent of graben subsidence can be achieved only if fault…

Geophysical models have traditionally treated diapiric ascent as occurring in purely viscous host rock, and dike intrusion as occurring in purely elastic host rock. Such models are incapable of determining (1) what governs the transition between the two transport mechanisms, (2) the properties of diapirs that ascend via a combination of…

The mechanics of slow slip events (SSE) in subduction zones remain unresolved. We suggest that SSE nucleate in areas of unstable friction under drained conditions, but as slip accelerates dilatancy reduces pore pressure p quenching instability. Competition between dilatant strengthening and thermal pressurization may control whether slip is…

Keywords

Recent relocation and focal mechanism analyses of deep earthquakes beneath Kilauea volcano, Hawaii indicate that seismicity is concentrated on a horizontal fault zone at a depth of 30 km, with seaward slip of the upper block on a low-angle plane. We discuss whether the observed localization of the earthquakes can be explained primarily by…

The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near zero slip rates has traditionally been inferred…

The duration of each subevent of 48 earthquakes with magnitude larger than 5.5 and depth greater than 100 km was determined from stacked traces of broadband records of Global Seismograph Network stations. We fitted the source time function by one or more triangles convolved with attenuation. We found that global stacks of displacement…

Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock discs were impacted with aluminum and polymethyl methacralate (PMMA) flyer plates at velocities of 10 to 25 m/s. Tensile stress magnitudes and duration were chosen so as to induce a range of microcrack growth insufficient to cause complete…

We obtain quasi-static, two-dimensional solutions for earthquake nucleation on faults obeying Dieterich's ?aging? version of the rate and state friction equations. Two distinct nucleation regimes are found, separated by roughly a/b ? 0.5, where a and b are the constitutive parameters relating changes in slip rate V and state ? to frictional…

We compare 2-D, quasi-static earthquake nucleation on rate-and-state faults under both "aging" and "slip" versions of the state evolution law. For both versions mature nucleation zones exhibit 2 primary regimes of growth: Well above and slightly above steady state, corresponding respectively to larger and smaller fault weakening rates. Well…

There are several ways of generating episodic slow slip events in models of rate-and-state friction. Here I explore the possibility that they arise on velocity-weakening faults whose length is "tuned" in some sense. Unlike spring-block sliders, which have a unique critical stiffness for instability, elastically deformable faults have…

Correction to “Aftershock asymmetry on a bimaterial surface”

Taiwan's 1999 Mw 7.6 earthquake generated over 85 km surface rupture along the Chelungpu thrust fault. Paleoseismic studies at the Shi-Jia site near Nantou city, reveal folding as the predominant form of deformation. Stratigraphic relations across the 1999 fold scarp show the style and degree of deformation caused by the penultimate event is…

Nearly all frictional interfaces strengthen as the logarithm of time when sliding at ultra-low speeds. Observations of also logarithmic-in-time growth of interfacial contact area under such conditions have led to constitutive models that assume that this frictional strengthening results from purely time-dependent, and slip-insensitive, contact…

A new state evolution law has recently been proposed by Nagata et al. (2012) that includes a dependence upon stressing rate through a laboratory derived proportionality constant c. It has been claimed that this law, while retaining the time-dependent healing of the Dieterich (or Aging) law, can also match the symmetric response of the Ruina (or…

Whether a dike can propagate far from a magma reservoir depends upon the competition between the rate at which propagation widens the dike and the rate at which freezing constricts the aperture available for magma flow. Various formulations are developed for a viscous fluid at temperature Tm intruding a growing crack in an elastic solid. The…

Rate‐ and state‐dependent friction (RSF) equations are commonly used to describe the time‐dependent frictional response of fault gouge to perturbations in sliding velocity. Among the better‐known versions are the Aging and Slip laws for the evolution of state. Although the Slip law is more successful, neither can predict all the robust features…

The November 30, 1974, ML = 5.5 and November 16, 1983, ML = 6.6 earthquakes generated left-stepping, en echelon ground cracks within the Kaoiki seismic zone, on the southeast flank of Mauna Loa volcano, Hawaii. The general trend of the ruptures, N48°-55°E, parallels a nodal plane of the main shocks' focal mechanisms. The ruptures themselves…

Abstract Episodic tremor and slip (ETS) in subduction zones is generally interpreted as the manifestation of shear slip near the base of earthquake-generating portion of the plate interface. Here we devise a new method of cross-correlating stacked Array of Arrays seismic data that provides greatly improved tremor locations, a proxy for the…

We develop a cross-station method to detect and locate tremor and low-frequency earthquakes (LFEs), based on the original work of Armbruster et al. (2014) that compares waveforms from the same time window at stations separated by roughly 10 km. To improve the signal-to-noise ratio, we first rotate the horizontal components into the empirical shear…

FREQUENT shallow earthquakes within the rift zones of the Hawaiian volcano Kilauea have been interpreted as resulting from stress changes associated with a shallow magma conduit system1,2. Here, by using a precise earthquake relocation technique3, we show that what had been imaged as a diffuse cloud of seismicity in the Upper East Rift in 1991…

We apply a new method to obtain accurate locations of tremor sources beneath southern Vancouver Island. Unlike more standard "cross-time" methods, which compare waveforms from different time windows at the same station, this "cross-station" method compares waveforms from the same time window at widely separated stations. It performs well,…

Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock discs were impacted with aluminum and polymethyl methacralate flyer plates at velocities of 10 to 25 m/s. This resulted in tensile stresses in the range of ~11 to 160 MPa. Tensile stress durations of 0.5 and 1.3 μs induced microcrack growth…

We use seismic waveform cross correlation to determine the relative positions of 2747 microearthquakes near Mount Lewis, California, that have waveforms recorded from 1984 to 1999. These earthquakes include the aftershock sequence of the 1986 ML5.7 Mount Lewis earthquake. Approximately 90% of these aftershocks are located beyond the tips of the…

Dieterich [1994] modeled the response to a stress step of a population of faults governed by rate- and state-dependent friction. This model assumes that aftershocks nucleate over areas on the fault that at the time of the main shock are already accelerating toward failure and disregards the effect of interactions among aftershocks. The main…

Abstract Slow slip events exhibit significant complexity in slip evolution and variations in recurrence intervals. Behavior that varies systematically with recurrence interval is likely to reflect different extents of fault healing between these events. Here we use high-resolution tremor catalogs beneath Guerrero, Mexico, to investigate the…

We investigate the behavior of simulated slow slip events using a rate and state friction model that is steady state velocity weakening at low slip speeds but velocity strengthening at high slip speeds. Our simulations are on a one-dimensional (line) fault, but we modify the elastic interactions to mimic the elongate geometry frequently…

Abstract We employ 130 low-frequency earthquake (LFE) templates representing tremor sources on the plate boundary below southern Vancouver Island to examine LFE magnitudes. Each template is assembled from hundreds to thousands of individual LFEs, representing over 269,000 independent detections from major episodic-tremor-and-slip (ETS) events…

Abstract Whether rate- and state-dependent friction evolution is primarily slip dependent or time dependent is not well resolved. Although slide-hold-slide experiments are traditionally interpreted as supporting the aging law, implying time-dependent evolution, recent studies show that this evidence is equivocal. In contrast, the slip law…

High confining pressure fracture tests of Indiana limestone [Abou-Sayed, 1977] and Iidate granite [Hashida et al., 1993] were simulated using boundary element techniques and a Dugdale-Barenblatt (tension-softening) model of the fracture process zone. Our results suggest a substantial (more than a factor of 2) increase in the fracture energy of…

Abstract We have recently suggested that the nearly constant duration of low-frequency earthquakes (LFEs) (and, equivalently, the band limitation of tectonic tremor) manifests a moment-duration scaling that is fundamentally different from regular earthquakes and is most easily explained as rupture on asperities of roughly constant dimension. In…

Dikes beginning to propagate away from a magma source are thin and grow slowly, and thus are susceptible to freezing. A self-similar solution is obtained for a dike propagating down a temperature gradient when the wallrock and magma temperatures are equal at the chamber wall. The solution applies only to the special case of a single-component…

Zhou et al. (2012) proposed that longitudinal dunes in the Qaidam Basin, China, formed like yardangs: by erosion into sediment that was not deposited by those dunes. Because erosion occurs on the upwind fl anks of most migrating dunes (Rubin and Hunter, 1982, 1985), the key to demonstrating a yardang-like origin is to show that the dunes did…

Seismic and geodetic data have demonstrated that dikes in the rift zones of Kilauea Volcano in Hawaii and Krafla Volcano in Iceland are typically intruded laterally from a central magma reservoir and acquire a blade-like form. A remarkable feature of many such dikes is that they propagate at shallow depths for 10s of km without erupting. Using…

The mechanism of magma transport at depth influences direction magma moves, the distance it travels before freezing, the degree to which it communicates chemically with the host rock, the form of surficial volcanism, and ultimately the growth of oceanic and continental crust. Commonly envisioned transport processes include porous flow in…

In January 1983, a dike intrusion/fissure eruption generated a swarm of 375 magnitude 1 to 3 earthquakes along a 16‐km segment of Kilauea's Middle East Rift Zone. We searched the Hawaiian Volcano Observatory catalog for multiplets of similar events from this region from 1980 through 1985 and obtained precise relative locations by waveform cross…