A comparison of rift-zone tectonics in Iceland and Hawaii

TitleA comparison of rift-zone tectonics in Iceland and Hawaii
Publication TypeJournal Article
Year of Publication1990
AuthorsRubin A.M
Volume52
Issue4
Pagination302 - 319
Date Published1990/03/01
ISBN Number1432-0819
Abstract

Observations of eroded volcanic rift zones indicate that dikes in Iceland are typically several times thicker than those in Hawaii. Geodetic and seismic observations of active rifts, however, suggest that dike heights in the two regions are similar. Provided the elastic properties of the rift zones are the same, this implies that dikes are intruded with higher driving pressures (magma pressure minus compressive stress perpendicular to the dike plane) in Iceland than Hawaii. A second major difference between the two regions is the greater prevalence of large normal fault scarps in rift zones in Iceland. From this it can be infered that a lower percentage of dikes breach the surface in Iceland than in Hawaii. Thus, although dikes in Iceland are intruded with higher driving pressures, they possess lower absolute magma pressures than in Hawaii. These differences can be interpreted in terms of the tectonic settings in the two regions. In Iceland, a steady remote extension reduces the horizontal stress perpendicular to the rift zone, allowing dikes to be intruded with low absolute pressures but high driving pressures when magma becomes available. In Hawaii, a more continuous magma supply on the timescale over which the dike-induced stresses are relaxed, and perhaps a greater role for intrusions in driving long-term rift extension, ensure that the rift-compressive stress is not relaxed significantly before the next dike is intruded. Thus the magma pressure must be nearly sufficient for eruption in order for intrusion to occur. If the mechanism for relaxing the rift-compressive stress were less efficient still, then an even higher percentage of dikes would erupt, and at times the rift zone trend could become an unfavorable orientation for dike intrusion. Such might be the case at Mauna Loa, which lacks large rift-zone faults and fissures and possesses numerous radial vents outside its two main rift zones.

URLhttps://doi.org/10.1007/BF00304101
DOI10.1007/BF00304101
Short TitleBulletin of Volcanology